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ABSTRACT

We present an information-theoretic approach to obtain an estimate of the number of bits that can be hidden in still
images, or, the capacity of the data-hiding channel. We show how the addition of the message signal or signature in
a suitable transform domain rather than the spatial domain can significantly increase the channel capacity. Most of
the state-of-the-art schemes developed thus far for data-hiding have embedded bits in some transform domain, as it
has always been implicitly understood that a decomposition would help. In this paper we compare the achievable
data-hiding capacities for different decompositions like DCT, Hartley, Hadamard, and subband transforms. We
show that transforms with inferior energy compaction property like Hartley and Hadamard are better choices for the
decomposition, than transforms with good energy-compaction property, like DCT or subband (wavelet) transforms.
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1. INTRODUCTION

The fast growth of digital networks, and the ever-decreasing cost of computers, printers and digital transmission
have made digital media increasingly popular over the conventional analog media. However, digital media also
causes extensive opportunities for mass piracy of copyrighted material. It is therefore very important to have ways
and means to detect copyright violations and control access to digital media.

Data-hiding or steganography, is a rapidly growing field with potential applications for copyright protection
(watermarking), hiding executables for access control of digital multimedia data, embedded captioning, secret com-
munications, and others. It is therefore of significant interest to have a theoretical estimate of the number of bits
that can be hidden in multimedia data. We provide an information-theoretic approach to estimate the number of
bits that can be hidden in still images.

Data-hiding schemes (in still images) can be broadly classified into two categories. The first category is called
cover image escrow hiding techniques, where, the original image is needed for extracting the hidden information.!
The second category is the oblivious detection techniques,? where the original image is not required for extraction of
the embedded message or signature. However, the schemes in the first category are of limited use. For instance, the
cover image escrow hiding schemes may not resolve rightful ownership.2? In addition, the receiver does not have
access to the original image most of the time.

Early work in data-hiding mainly consisted of modifying the least significant bits (LSB) of data to embed some
message bits. However, it is usually necessary for the embedded bits to survive common signal processing operations.
Unfortunately these methods lack the necessary robustness, to make them useful for many applications. Most of the
current techniques for data-hiding in images utilize some decomposition for embedding the message bits. Among
different orthonormal decomposition techniques, it was probably the inspiration from image compression applications
that caused DCT and subband (wavelet) transforms to be more popular than the others. In this paper, we show why
a decomposition helps to improve the data-hiding capacity. We also compare the achievable capacities for different
decompositions like Hartley, DCT, Hadamard and subband (wavelet) transforms.

This work was partially supported by Panasonic Technologies Inc., Plainsboro, NJ.



Figure 1. The Data Hiding Channel.
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Figure 2. Generalized Schematic of Data Hiding / Retrieval.

2. PROBLEM STATEMENT

Let I be the original (cover) image, to which a message S (a representation for embedded information bits) is added,
such that

I=1+S5S. (2.1)

The modified image I , is wvisually indistinguishable from I and may typically be subjected to a lossy compression
scheme, like JPEG

I=c, (2.2)

where C(.) denotes the compression / decompression operation. Therefore, embedded bits in image I are to be
extracted from I. We would like to know the maximum number of bits that can be hidden and recovered from
the image with an arbitrarily low probability of error, namely, the capacity of the data-hiding channel, for a given
compression scenario.

A block diagram of the data-hiding channel is shown in Figure 1, where S is the message (signature) to be
transmitted through the channel. Note that there are two sources of noise; I, the noise due to the (original) cover
image, and P, the noise component due to processing (compression / decompression). Hence, S is the “corrupted”
message. Note that for the cover image escrow schemes, there is only one source of noise - due to processing. The
image noise can be subtracted from the received image I. One can expect such schemes to have higher capacity than
the oblivious detection schemes.

Figure 2 displays the block diagram of a typical data-hiding scheme. In this paper, we assume the system of Figure
2 to calculate the capacity of data-hiding channel. An information theoretic approach for the capacity measure of
data-hiding channels was reported in Smith et. al.* The study however, was limited in scope, since it was assumed
that the message is added to the original image in the spatial domain. We show in this paper how the capacity of
the data-hiding channel can be improved by using a suitable transform.

3. CAPACITY OF ADDITIVE NOISE CHANNELS

Prior to considering the data-hiding channel of Figure 1, we consider the simpler channel displayed in Figure 3(a).
X ~ [fx(x), 0] is the message to be transmitted, Z ~ [fz(z), 02] is the additive noise in the channel, and
Y ~ [fy(v), ‘712;] is the received signal at the output of the channel, along with their pdfs and corresponding variances.
We also assume that X and Z are independent, implying that ¢ = o7 + 0. Therefore, the channel capacity is

given by®
C=max I(X,Y) = max h(Y) — h(Y|X) = max h(Y) — h(Z) bits. (3.3)

fx(z) fx(z) fx(z)

where I(X,Y), is the mutual information between X and Y. For a given noise statistics fz(z) and input variance
02, one can maximize the entropy of the output Y,

T’

WY) = - / fv (9) logs (f ())dy bits, (3.4)
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Figure 3. (a) A Simple Additive Noise Channel. (b) The Channel of (a) Modified to Obtain Equivalent Additive
Gaussian Noise.

by choosing a suitable distribution fx(z) for the input message X. For a given variance 012/7 the maximum entropy
value of h(Y') = § log,(2meo?) bits is achieved when Y has a normal distribution. For instance, the maximum entropy
value is achievable if both pdfs fz(z) and fx(z) are normally distributed. However, for an arbitrary distribution
fz(2), and a fixed 02, the maximum achievable entropy value is not immediately obvious.

To calculate that, we pass the noise Z through an ideal information processor, (see Figure 3(b)) which does not
alter the amount of information in Z, but changes its statistics to a Gaussian distribution for its output Z,. Since
the output of the information processor has the same entropy as the input, the variance of the output, afs, can be
obtained by solving the equation

WZ,) = h(Z) = %log2(27reo2 ) bits. (3.5)

28
It is known that the Gaussian distribution has the highest entropy for a given variance.> Alternately, the Gaussian
distribution has the least variance for a given entropy. Thus it is always true that o2, < o2. We call afg the entropy

zg —

equivalent Gaussian variance. The maximum value of h(Y") is therefore obtained as

max h(Y) = max h(X +Z,) = % log, (2me(0?, + 02)) bits. (3.6)

In order to calculate the channel capacity, we can now replace fz(z) by N[0,02].
2
€

1 o .
C= g{u(a;c) MY)—h(Z,) = 2 log, (1 + a—zg) bits. (3.7

Note that the two channel noise sources given in Figure 1 can be replaced by a single Gaussian noise source with

the combined variance of 62 + o2, where o2 is the equivalent Gaussian variance for the image noise I, and o2 is the
ig p? ig ) V4

variance of the processing noise. If o2 is the message signal energy, the capacity of the data-hiding channel can be
expressed as
Ch = Hlogy (1 + =2 bits (3.8)
= — _— 1 . .
h 9 25 o_igg +0_12)

As the first approach to calculate the capacity of the data-hiding channel, we assume identity transformation
for the Forward and Inverse Transform blocks in Figure 2. The image noise I is due to the original image pixels,

which are assumed to be uniformly distributed random variables u taking values between 0 and 255 with variance

o7. Let o7 be the variance of the noise (per pixel) introduced due to processing, (e.g. compression). Since the

(]
processing noise is usually a result of many independent operations, we shall call upon the Central Limit Theorem,®
and assume a Gaussian distribution for the processing noise. Finally, let 02 be the average energy per pixel allowed
for the message. If M N is the number of pixels in an image, then the energy (or variance) of the zero-mean message

signal is calculated as

MN
2 _ Zi:l S’l2

9% =T MN

(3.9)



Figure 4. Decomposition of the Data-Hiding Channel into Parallel Sub-Channels

where, S; is the message signal added to the i** pixel. The (differential) entropies, h(g), of a Gaussian random

variable g, with variance of o3, and h(u), that of a uniformly distributed random variable u with variance o7 are
expressed as®

1
hig) = §log2(27rea§)bits
1
h(u) = 51og2(12ag)|oits. (3.10)

From Eq. 3.10, the entropy equivalent Gaussian noise (or the Gaussian random variable that has the same entropy
as the uniform random variable u of variance 0?), has a variance given by
o _ 12

[o—

= 3.11
o 27e ( )

o;.

In order to be more explicit, let us derive the capacity of the data hiding channel quantitatively. We would expect
the variance of u, the pixel values, to be given by o? = % (or o; = 73.6). However, statistics from many test
images show that o; = 55. Therefore, we assume that « has a uniform distribution with o; = 55. From Eq. (3.11) it
is calculated that o,, = 55(%)0'5 = 46. If we allow a degradation of the image after the addition of a message to a
PSNR of 40 dB, then the message energy is calculated to be o2 = 6.5. Furthermore, if the image goes through JPEG
compression at 50% quality, then it is measured for test images that the processing noise has a standard deviation
of 0, ~ 6.7. This would yield a capacity C}, value of 0.0022 bits/pixel (140 bits for a 256 x 256 image). Even if
the message-embedded image undergoes some other processing which reduces the PSNR to 22 dB (the image would
be barely recognizable), where o, = 20, the capacity C} would still be 0.0019 bits per pixel (about 124 bits for a
256 x 256 image).

One can see that hiding the message in the image domain can be very robust. However, in most cases, we do
not require such robustness. Since most data-hiding applications aim to protect and ascertain copyright or control
access, it is unlikely in such a scenario that anyone would want to claim ownership or control access of an image of no
commercial value (an image which has been significantly degraded in perceptual quality). Typically, it is sufficient if
the message survives well-known image compression/ decompression operations with acceptable quality.

Given that we are satisfied with less robustness than the above mentioned scheme offers, could do better than

this? It is intuitive that a decomposition of the image into its different frequency bands might help. In Figure 4, the
channel of Figure 1 is decomposed into its multiple sub-channels.

The decomposition is performed by the Forward and Inverse Transform blocks of Figure 2. The decomposition
of an image into its L sub-bands results in L parallel sub-channels with two noise sources in each sub-channel. Let
afj, j = 1---L, be the variances of the coefficients for each sub-band (or the variances of the image noise in each
sub-channel) of the decomposition. Similarly, let their corresponding equivalent Gaussian variances be a?gj. If af,i
is the variance of the processing noise (Gaussian) in the j** sub-channel, then, the combined total capacity of the L



parallel sub-channels is given by

2

L
MN 2 .
Ch = T J:E . 10g2(1 + 07) bltS (312)

for an image of size M N pixels. In Eq. (3.12), v; is the visual threshold of band j. In other words, ’U]2- is the maximum
message signal energy permitted in band j based on its perceptual quality effects.

We expect the low frequency bands of the decomposition to very noisy due to the high energy content of the
image. On the other hand, high frequency components would be very vulnerable to processing, as most compressors
would discard them at low bit-rates. At mid-frequency bands, however, we could strike a compromise. If such a
decomposition helps, then what is the ideal decomposition? In the following sections, we evaluate the capacity of the
data-hiding channel for DCT, Hartley, Hadamard, and uniform subband decomposition based embedding schemes.

4. MODELING CHANNEL NOISE

In order to model the channel noise (the two noise sources I and P in Figure 1), we measure their statistics from
10 monochrome test images of size 256 x 256, and their JPEG and SPIHT” compressed versions at given bit rates.
The cover images are decomposed into L sub-bands using an orthonormal transform. Let f7,(i;) be the distribution
of the j* sub-band with variance afj. (The image noise I is split into its components in L sub-channels, which are
modeled as random variables fr, (i;) with variances O'in ,j=1---L.)

Having obtained the variances of the image noise in each sub-channel, the next step is to obtain their equivalent
Gaussian variances. This is achieved by plotting a histogram of the coefficients for each band, and calculating the
entropy. If Az is the width of the n bins of the histogram g;(m), m = 1---n, and p is the total number of coefficients
in band j, the entropy #; and the equivalent Gaussian variance a?g ; of the sub-band are obtained as

n

9i() log (ﬂ)A.’E, bits

Hy P pAz 2 pAx

92H;
2 _ ) 4.1
'8 2me (4.13)

Thus, the image noise in sub-channel (band) j can be substituted by a Gaussian noise of variance a?gj.

Let the compression noise in each sub-channel be agj, j =1---L. As in the previous section, it is justified to
assume a Gaussian distribution for the processing noise for each channel. We obtain w samples for each sub-

band from n; test images. Let 4;,, k =1,..., Mf"", be the coefficients of band j. Let fj,c, k=1,..., % be the
corresponding coefficients for the images subjected to some lossy compression scheme.

It can be easily seen that the processing noise in each sub-band can not be obtained as ’i’jk — ;.. Consider a
scenario, where DCT is used for the decomposition, and low quality JPEG for processing. Let us assume that a
high frequency sub-band is completely removed due to compression (%k = 0Vk for some j). This implies that all
information buried in that sub-channel (sub-band) is lost. In other words, the processing noise in that sub-channel
has infinite variance. This is because no correlation exists between 7;, and i;,. We therefore obtain the equivalent
additive noise in each sub-channel as a noise uncorrelated with %;, that would cause the same reduction in correlation

between 4; and 4;. We define the intra-band correlation as

(ip15) _ (g, (65 + 1) =), (4.14)
lijlla; sl +mgl 7

where n; is a vector of (zero mean) Gaussian random variables which is uncorrelated with ;. Then, a%j = |n;|? is
the variance of the equivalent additive noise due to compression (or o, = 0y;). Since (i;,n;) = 0, Eq. (4.14) can
be simplified to obtain
1 . 12

—1)|2;] (4.15)

7, =il = (5
J

Note that in Eq. (4.15) when p; — 0, 0,;, — 00.



5. VISUAL THRESHOLD

The value of the visual threshold for sub-channel j, v; in Eq. (3.12) however, is highly subjective. Since the amount
of message signal energy permitted in any sub-band is determined by the visual threshold, different models for visual
thresholds would yield different estimates of achievable capacity. Since it is well known that the human visual system
is more sensitive to the lower frequencies than the higher frequencies, the signal-to-noise-ratio (message signal to
image noise) should be smaller for lower frequency sub-bands. In general lower frequency sub-bands have higher
variances. Hence, we choose the visual threshold v; as

v} = K(0i;*)" (5.16)
where 0 < a < 1, and K << oy; Vj, is a constant. When a = 0, the message signal energy is distributed equally
among all sub-bands regardless of their variances. On the other hand, when a = 1 the message signal energy is
distributed in the ratio of the band variances.

From Eqgs. (3.12) and (5.16), for the case of no processing noise, if we assume that all sub-channels have the same
pdf type (such that Koi; = Klaigj), the channel capacity can be calculated as

KiokY  MN LK,
— &3 ) ~ T 10g2 (]. + Z m), (517)

igj Jj=1"igj

L
MN
Ch = T 2110g2(1 +
]:

Note that for the case of a = 1, the decomposition does not have any effect on the capacity. However, for a < 1, C},
can be increased by choosing a suitable transform, as shown in the next section. Thus, the increase in capacity is

due to the fact that one can add relatively more message signal energy to bands of lower variances (or high frequency
bands).

6. CHANNEL CAPACITY VS CHOICE OF TRANSFORM
It should be noted that both Egs. (3.12) and (5.17), are subject to the following constraints

L
Yo = 1ol
i=1
L

J?gj = LU?g
j=1

1 2
T = 510g2(27reaig) (6.18)

where o7 is the variance of images, a?g is the entropy equivalent Gaussian variance for o7, and 7 is the average entropy
of images. In other words, the above constraints state that an unitary transform preserves the total energy and the
total information content, or the entropy. With the above constraints, it can be shown that the minimum channel
capacity (for the case of no processing noise or Eq.(5.17)) is achieved for 0y, = 0Vj, or when no decomposition
(spatial embedding) is used.

Note that a transform with good energy compaction or higher Transform Coding Gain (GTC)® would result in

more ¢mbalance of the coefficient variances. This would enhance the term fozl % in Eq. (5.17), and therefore
i

increase the capacity (when the processing noise is small). Therefore, good energy Jcompaction transforms like DCT
and subband transforms are good embedding decompositions for low processing noise scenarios. However, we should
expect that the reduction in capacity with increase in processing noise to be lower for transforms like Hadamard
and Hartley, which are unsuitable for compression purposes. While JPEG compression at low quality is certain to
remove almost all the high frequency components of DCT coefficients, it will not affect the high frequency DFT and
Hadamard coefficients to the same extent. Thus decompositions unsuitable for compression would in general be more
immune to processing noise than decompositions with high GTC, for data hiding purposes.

The distribution of the image and processing noise among various channels (bands) of DCT and Hartley transforms
are shown in Figure 5 for JPEG (at 30% quality). It is readily seen that the low image noise (or high frequency)
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Figure 5. Standard Deviation Image and Processing Noise for the 64 Channels of DCT and Hartley Decompositions.

DCT bands suffer from very high processing noise. This results in very few bands (or channels) in which both image
and processing noises are moderate. On the other hand, the high frequency (low image noise) Hartley bands are not
affected as badly as the high frequency DCT bands. This results in many ‘useful’ Hartley transform channels.

The next question that arises is the choice of the number of bands for the decomposition. From Eq. (5.17)
we see that a decomposition will not hurt. At worst, it may cause no improvement. Therefore decomposing each
sub-channel of say a 16 band decomposition further into four sub-channels can only improve the capacity of data
hiding, in this theoretical context.

7. EXPERIMENTS AND CAPACITY BOUNDS

We calculated the coefficient statistics o;; for various decompositions like 4 x 4, 8 x 8, 16 x 16 and 32 x 32 size
DCT, Hartley, Hadamard and 16, 64, 256 and 1024 band uniform subband (wavelet, using 8-tap Daubechies filter)
decompositions, and o,; for JPEG (quality factors 20-75), and SPIHT image compression schemes at rates 1, 0.5,
and 0.25 bpp. The set of 10 monochrome test images with 256 x 256 pixels included Lena, Baboon, Barbara, Goldhill,
Airplane, Peppers and Boats.

The theoretical channel capacities for different decompositions (for 256 x 256 images, or 65536 pixels) like DCT,
Hartley (Har), subband (SB), and Hadamard (Had) transformations, are displayed in Figures 6 and 7 for 64 and 256
sub-bands respectively. We use the visual threshold model of Eq.(5.16) with a = 0.5 in these figures. The capacities
are shown for four different processing noise scenarios, namely,

(a) no processing noise,

(b) processing noise statistics measured for the SPTHT 1 bpp and JPEG-50 cases. This implies that we choose
the worst processing noise in each sub-band calculated for SPTHT 1 bpp and JPEG-50. (Choosing the worst ensures
that the hidden message would survive SPTHT 1 bpp or JPEG-50.)

(c) processing noise for SPTHT 0.5 bpp and JPEG-30, and

(d) processing noise for SPTHT 0.25 bpp and JPEG-20.
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Figure 6. Channel Capacity for 64-band decompositions. (a) No processing Noise, (b) Processing noise from SPTHT
1 bpp and JPEG-50, (c) Processing Noise from SPTHT 0.5 bpp and JPEG-30 and (d) Processing Noise from SPTHT
0.25 bpp and JPEG-20.

From the plots in Figures 6 and 7, we can see that the bit-rates for all decompositions fall with increased processing
noise, as expected. Similarly, we see that DCT and subband decompositions are better than Hartley and Hadamard
decompositions for detection of the message when there is no processing noise. It is also seen that decompositions
unfavorable for compression (Hartley and Hadamard) are more immune to processing noise than the decompositions
suitable for compression (DCT, subband).

As expected, we also see that the channel capacities increase with an increase in the number of bands of the
decomposition. However, the increase in capacity is marginal when processing noise is high.

We can define a figure of merit, for each of the L (% + 2 for DFT II) sub-channels for the various decompositions.
The figure of merit is given as the ratio of the capacity of each sub-channel to the logarithm of the power of the
message signal in that sub-channel. The approximate (rounded) values of the figure of merit for the channels of
different decompositions (when the message has to survive JPEG-25 or SPTHT compression at 0.5 bpp), are listed
in Table 1 for various 64-band decompositions. These figures indicate the relative performance of each sub-channel,
and would therefore be useful in designing hidden communication schemes to make optimal trade-offs between the
visual quality of the image and the number of bits that can be embedded. As the figure of merit is normalized with
respect to the message signal energy in each band, it is independent of the model used for the visual threshold. The
higher figures of merit for the channels of Hartley decomposition shows that it would perform better than other three
decompositions for any message signal energy assignment scheme (model for visual threshold). As explained in the
previous section, one can immediately see that there exists fewer low efficiency channels for the Hartley decomposition
when compared to DCT or subband decompositions.
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Figure 7. Channel Capacity for 256-band decompositions. (a) No processing Noise, (b) Processing noise from
SPIHT 1 bpp and JPEG-50, (c) Processing Noise from SPIHT 0.5 bpp and JPEG-30 and (d) Processing Noise from
SPIHT 0.25 bpp and JPEG-20.

(a)-Hartley (b)-DCT
0 15 34 37 3 26 17 9| 0 &8 19 29 37 42 29 23
15 23 36 34 40 30 38 26| 8 17 28 34 41 28 10 28
34 36 31 12 13 14 33 37|19 28 36 40 35 15 7 22
37 34 12 2 9 12 25 39|29 34 40 40 23 8 2 22

35 40 13 9 39 24 34 48 (37 41 35 23 15 2 11 2
26 30 14 12 24 13 24 35|42 28 15 8 2 0 0 O
17 38 33 25 34 24 34 38(29 10 v 2 1 0 0 3

9 26 37 39 48 35 38 25|23 28 22 22 2 O 3 4

(¢)-Subband (d)-Hadamard
0 9 29 37 43 41 37 33| 0 23 11 22 5 22 10 22
9 18 19 26 37 43 32 18 |23 34 30 12 38 24 34 22
29 19 30 37 29 23 30 16|11 30 31 24 22 29 28 26
37 26 37 28 44 43 10 8122 12 24 13 28 21 27 13
43 37 29 44 11 19 2 7| 5 38 22 28 11 32 17 30
41 43 23 43 19 39 6 9|22 24 29 21 32 22 33 24
3r 32 30 10 2 6 2 12|10 34 28 27 17 33 24 30
33 18 16 8 T 9 12 11|22 22 26 13 30 24 30 17

Table 1. Figure of Merit of the bands of different (64 band) decompositions when the image has to survive JPEG-25
or SPIHT 0.5 bpp. (a) Hartley, (b) DCT, (c) Uniform Subband and (d) Hadamard.
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8. THE IDEAL DECOMPOSITION
Note that in Eqn. 5.17, if a = 0.5, the capacity of each sub-channel of a decomposition is given by

Ko,,.
Chj = 10g2(1 + ﬁ) (819)
O, T 0,
In order to maximize Cp; it is enough to maximize ¢ = a;f_’; s~ It can be easily seen, that ¢ (and hence Cy;)
ig; 7 7p;

is maximized when afgj = af,j. The ideal decomposition would be the one which results in image noise variances
close to the processing noise variances in the maximum number of sub-bands. Note that o; and o, cannot be made
equal in all sub-bands since typically > y afj >> y 012,]_. It should also be noted, that a decomposition so obtained
would perform as expected only if we are able to assume the same model for the relationship between the coefficient
variance and the visual threshold. Therefore, the search for such a decomposition may not be simple, and is a topic

of current research.

9. CONCLUSIONS

We have presented an information-theoretic approach to estimate the number of bits that can be hidden in still
images. We argue why a decomposition of an image into many frequency bands might enhance the number of bits
that can be hidden, and this theoretical claim is supported by simulations. We report the achievable capacities for
different decompositions like DCT, Hartley, Hadamard and subband transforms and conclude that the choice of the
transform should depend on the robustness required. Transforms with poorer energy compaction properties (like
Hartley or Hadamard) would in general be preferable to high energy compaction transforms (DCT or Wavelets) for
typical robustness requirements.

Figure 8 shows the position of various transforms in the scale of energy compaction. To the left is the identity
transform with no energy compaction. At extreme right is the Karhunen-Leove Transform (KLT), the best energy
compaction transform. KLT would yield the best results if processing noise is very low. But as processing noise
increases (if we desire greater robustness), we should have to move more and more to the left of the scale to choose
a transform.

Note that we evaluate processing noise by measuring the correlation between the image components before and
after compression. By this, we implicitly assume that the message signal (signature) is affected to the same extent
as the image coefficients themselves by the compressor / decompressor. In a more practical scenario, this might not
be true. As in general, the signature will be a random sequence, the compressor / decompressor would suppress
the signature to a greater extent than it suppresses the image coefficients. In fact, an ideal compressor should
completely eliminate the signature while still retaining significant information about the image. So this may imply
higher processing noise than the values obtained from our simulations. At the least, this would imply significantly
reduced degrees of freedom for the choice of the signature.

Also, we could decompose the high-image-noise and low-processing-noise low-frequency bands further, resulting
in few bands with much lower image noise and low processing noise. This would imply more capacity for the low
frequency bands than our simulations predict. In a companion paper in this volume,? we propose a non-linear signal

addition and detection method, where we use such a decomposition to suppress image noise in the low frequency
bands.
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